Recent developments in organic aerosol modeling

Barbara Ervens

CIRES, University of Colorado, Boulder, CO

NOAA, ESRL/CSD Boulder, CO

Aerosol processing by aqueous phase chemistry – an important SOA source?

Cloud chemistry

- Oxalate formation
- SOA yields (from isoprene) 0.2 % < Y < 20% Ervens et al., 2003, 2004, 2008.

Chemical processes in aqueous particles

Several recent lab studies have shown that

- (i) products
- (ii) rate constants
- (iii) reaction mechanisms

are different than in an dilute aqueous phase

Why could chemical processes in haze particle be important?

Cloud droplets		Aerosols
Life time	minutes	days
LWC	10 ⁻⁴ 10 ⁻³ g/g	10 ⁻¹⁰ 10 ⁻⁷ g/g
Solute concentrations	s ~ μmol L ⁻¹	1-10 mol L ⁻¹

Reactions such as $Org + Org \rightarrow Org_2 \rightarrow Org_3 \rightarrow ...$ $Org + Sulfate, Ammonium, ... \rightarrow Organic -S, -N compounds$ much more likely

- What reaction parameters are known for such processes?
- And how can they be implemented in models?
- How efficient are these processes in ambient haze particles?

Results using lab data (literature)

Reversible glyoxal uptake

$$K_H^* = K_H \cdot (1[Solute] \cdot K_{Sol})$$

Glyoxal + Solute $\leftarrow K(GlySol) \rightarrow SOA$

Irreversible glyoxal uptake

Gly (+ reactant) → SOA

Solute adducts

in NaCl particles
in SO₄²⁻ particles
in fulvic acid particles

Glyoxal self reaction

Gly --> $(Gly)_2$ --> $(Gly)_3$ Gly --> $(Gly \cdot H_2O)_2$

- Predicted SOA mass \leq 10 μ g m⁻³ SOA (5 ppb glyoxal)
- Large uncertainties in in suggested reaction parameters

...more details on my poster

What next?

Parameterization of 'haze particle SOA formation'

• Validation of SOA_{haze} and SOA_{cloud} (= $f(NO_x, LWC, \tau)$) parameterizations

Required input

- VOCs (e.g., glyoxal sources)
- Oxidant levels (O₃, NO_x, ...)
- Aerosol parameters (size distribution, composition)
- RH (T, LWC, ...) profiles

Questions

- How important is the aqueous phase (haze+cloud) in terms of SOA production
- Can composition/properties of processed aerosol be explained by aqueous chemistry?